skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lach, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While relying on energy harvesting to power Internet of Things (IoT) devices eliminates the maintenance burden of battery replacement, energy generation fluctuation constitutes a major source of uncertainty to design reliable self-powered IoT devices. To characterize spatial-temporal variability of energy harvesting, data acquisition campaigns are needed across the range of potential harvesting sources. In this work we present a dataset to characterize thermal energy sources in residential settings by measuring thermoelectric generator (TEG) operating conditions over 16 deployment locations for periods ranging from 19 to 53 days. We present our easy-to-use thermal energy measurement platform built from off-the-shelf component modules and a custom TEG interface circuit. We demonstrate how the collected measurements can inform the design of energy harvesting IoT devices by deriving the TEG's maximum power output and estimating the available energy at each harvesting location. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)